Namespace: ClosedQA
Test whether an output answers the input
using knowledge built into the model.
You can specify criteria
to further constrain the answer.
Functions
partial
▸ partial<T
>(args
): Scorer
<string
, Omit
<LLMClassifierArgs
<{ criteria
: any
; input
: string
}>, T
> & Partial
<Pick
<LLMClassifierArgs
<{ criteria
: any
; input
: string
}>, T
>>>
Type parameters
Name | Type |
---|---|
T | extends "openAiApiKey" | "client" | "openAiOrganizationId" | "openAiBaseUrl" | "openAiDefaultHeaders" | "openAiDangerouslyAllowBrowser" | "azureOpenAi" | "model" | "temperature" | "maxTokens" | "useCoT" | "input" | "criteria" |
Parameters
Name | Type |
---|---|
args | { [K in "openAiApiKey" | "client" | "openAiOrganizationId" | "openAiBaseUrl" | "openAiDefaultHeaders" | "openAiDangerouslyAllowBrowser" | "azureOpenAi" | "model" | "temperature" | "maxTokens" | "useCoT" | "input" | "criteria"]: LLMClassifierArgs<Object>[K] } |
Returns
Scorer
<string
, Omit
<LLMClassifierArgs
<{ criteria
: any
; input
: string
}>, T
> & Partial
<Pick
<LLMClassifierArgs
<{ criteria
: any
; input
: string
}>, T
>>>